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Macrostate data clustering

Daniel Korenblum* and David Shalloway†
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~Received 10 December 2002; published 15 May 2003!

We develop an effective nonhierarchical data clustering method using an analogy to the dynamic coarse
graining of a stochastic system. Analyzing the eigensystem of an interitem transition matrix identifies fuzzy
clusters corresponding to the metastable macroscopic states~macrostates! of a diffusive system. A ‘‘minimum
uncertainty criterion’’ determines the linear transformation from eigenvectors to cluster-defining window func-
tions. Eigenspectrum gap and cluster certainty conditions identify the proper number of clusters. The physi-
cally motivated fuzzy representation and associated uncertainty analysis distinguishes macrostate clustering
from spectral partitioning methods. Macrostate data clustering solves a variety of test cases that challenge other
methods.
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I. INTRODUCTION

Finding subgroups orclusterswithin large sets ofitemsis
a problem that occurs in many contexts from astronomy
integrated chip design and pattern recognition~see Refs.
@1–4# for reviews!. DNA microarray gene expression anal
sis and bioinformatic sequence comparisons are recent
important applications in molecular biology@3,5#.

The clustering problem may be posed in two ways: In
first case~e.g., DNA microarrays!, NM measurements ar
made on each of theN items. TheN3NM measurement ma
trix X is then used in a problem-specific manner to comp
a symmetricN3N dissimilaritymatrix D. Each off-diagonal
elementDi j provides an inverse indicator of the correlatio
between the measurements of itemsi andj. A straightforward
method is to set

Di j 5F (
a,b51

NM

~Xia2Xja!gab~Xib2Xjb!G1/2

, ~1!

whereg is a problem-specific Euclidean metric tensor. Th
allows preconditioning of the scales of the different measu
ments and, by using nondiagonalg, adjustment for measure
ment correlations~particularly important if some measure
ments are replicates!. Statistical noise and complexity can b
reduced by using singular-value decomposition to p
identify principal components ofX that span much of the
variation in the measurement space. This facilitates iden
cation of clusters ‘‘by eye’’ or with various heuristics~e.g.,
Refs.@6–8#!.

In the second case~e.g., pairwise gene sequence compa
sons!, the primary data are measures of dissimilarities
tween pairs of items: In this caseD is defined, but there is no
measurement matrixX and the elements ofD may not satisfy
the triangle inequality.

Early clustering methods were ‘‘hierarchical,’’ generatin
open binary trees which can~depending on the selecte
cross-section! dissect the items into any number of cluste
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between 1 andN. In these methods, the choice of the optim
number of clusters is an independent problem@2,9,10#. ‘‘Ag-
glomerative’’ hierarchical methods iteratively join items t
gether to form a decreasing number of larger clusters; ‘‘d
sive’’ hierarchical methods use successive subdivision
generate an increasing number of smaller clusters. While
glomerative methods can be inexpensive, they usually
only local and not global information, which weakens pe
formance@2#. While divisive methods can use global info
mation, they can have high complexity inN and thus can be
too expensive for large problems. A weakness of both ty
of hierarchical methods is that they cannot repair defe
from previous stages of analysis.

Some clustering methods are based on analogies to ph
cal systems, in which macroscopic structure emerges f
microscopically defined interactions. A number of them ha
used analogies to statistical mechanical phase transit
@11–15#, while others have used chaotic@16# or quantum
mechanical@17# systems as analogs. Most of these have
advantage of being ‘‘fuzzy’’—in addition to assigning item
to clusters, they provide a continuous measure of the pr
ability or strength of the assignment of each item.

Clustering can also be performed by objective functi
optimization. If there is ana priori model for the structure of
the clusters in the measurement space~e.g., as a collection of
Gaussians!, then a corresponding parametric objective fun
tion can be used. Otherwise a nonparametric objective fu
tion may be useful. For example, graph theory cluster
methods treat the items as nodes of a graph whose inter
necting edges have ‘‘affinities’’ or ‘‘weights’’ determine
from D ~See Refs.@18,19# for review!. They typically use
‘‘min cut’’ or ‘‘normalized cut’’ objective functions and
search for the~sometimes ‘‘balanced’’! graph partitioning
that minimizes the~sometimes normalized! sum of the
weights of the cut edges. Spectral graph theory@20# methods
use the eigenvectors of the affinity matrix~or the closely
related generalized Laplacian matrix! to assist the process
Spectral bipartitioning~See Refs.@21# for history and re-
view!, which uses one eigenvector, can be applied rec
sively for hierarchical dissection@22#; and the developmen
of nonhierarchical methods for the concurrent use of m
tiple eigenvectors is an active topic of research~see Refs.
@19,23# for reviews!.
©2003 The American Physical Society04-1
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We present here a nonhierarchical, fuzzy cluster
method that uses an analogy between data clustering an
coarse graining of a stochastic dynamical system. The it
are regarded as microstates that interact via a dynam
transition matrixG, which is derived fromD. Clusters are
identified as the slowly relaxing metastable macrosco
states~macrostates! of the system. These are computed
concurrently using multiple eigenvectors ofG in the same
way as the macrostates of a continuous diffusive system
identified from the eigenfunctions of the Smoluchowski o
erator@24#. The number of clusters is algorithmically dete
mined by the spectral properties and cluster overlap crite
We demonstrate that the method can solve difficult proble
including ones in which the clusters are irregularly shap
and separated by tortuous boundaries.

II. METHOD

A. Macrostates and stochastic coarse graining—a brief
overview

Coarse graining is used in nonequilibrium statistical ph
ics to reduce the dimensionality and complexity of the d
namical description@25#. In the usual situation, the system
initially described microscopically by a fine-grained firs
order equation specified over a configuration space of mi
scopic states~microstates!. Microscopic degrees of freedom
corresponding to very rapid motions are removed by~possi-
bly nonlinear! projection. This generates a coarse-grain
master equation with fewer degrees of freedom, which
scribes the slower dynamics of the system’s macrosta
Each macrostate corresponds to a subregion of configura
space that has been projected onto one value of the ma
scopic parameters. For example, to describe Brownian
tion of pollen in water, the~fast! water molecule degrees o
freedom are projected out, leaving only the~slow! coordinate
of the pollen to parametrize the macrostates. In this exam
the macrostates are continuously parametrized, but they
also be discrete. For example, to describe chemical react
each macrostate is a chemical state, a subregion of co
mation space which includes all vibrations, translations,
rotations of a specific metastable, covalently bonded arran
ment of atoms.

Coarse-graining projections are not arbitrary: the utility
the resultant macroscopic description depends upon the
istence of a sufficient disparity betweent local, the time scale
of the fast~projected-out! motions~which generate ergodic
ity within the macrostate!, andtglobal, the time scale of the
remaining slow motions~which are required for ergodicity
between macrostates!. Appropriate projections can some
times be chosen heuristically when the disparity betw
t local andtglobal is large and subjectively obvious. When th
is not so, projections into discrete macrostates can be
lected by analyzing the eigenspectrum of the microsco
stochastic dynamics. This procedure is described in deta
Refs.@24,26#. We summarize the salient points here.

Consider the example illustrated in Fig. 1~A! of a thermal
ensemble of systems having microscopic parameterx and
potential energyV(x). The bimodal equilibrium probability
density is given by the Gibbs-Boltzmann distributio
05670
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peq(x)}exp@2bV(x)#, whereb is the inverse temperature i
inverse energy units. If system dynamics are overdam
~i.e., diffusive!, then the nonequilibrium probability distribu
tion p(x;t) evolves in time according to the first-orde
Smoluchowski equation

]p~x;t !

]t
5E G~x,x8!p~x8;t !dx8, ~2!

whereG is the kernel of an operator determined byV, the
temperature, and the diffusion constant. Once the eigenfu
tions and eigenvalues ofG have been determined, the gene
solution to Eq.~2! can be expanded as

p~x;t !5 (
n50

`

cne2gntwn~x!, ~3!

where the eigenvalues and right eigenfunctions ofG are
2gn andwn(x), respectively, and the expansion coefficien
cn are determined by the initial conditionsp(x;0). ~Without
loss of generality we normalizew0 so thatc051, and as-
sume that eigenfunctions are ordered according to the m
nitudes of their eigenvalues.!

We always haveg050 andw0(x)5peq(x), correspond-
ing to the stability of the Gibbs-Boltzmann distribution. Th
other gn are non-negative and determine the rates of rel
ation towards this equilibrium state. Whilew0 is non-
negative everywhere, the other eigenfunctions take b
positive and negative values, and the exponential decay
their amplitudes generate probability fluxes. For illustratio
Fig. 1~A!, panel b displays~for a selected temperature! w0

FIG. 1. Heuristic examples.~A! Identifying the macrostates of a
continuous stochastic system in one dimension. Panel a: the po
tial V(x) and eigenvalue spectrum. Panel b: the zeroth and the
excited right eigenfunctions of the corresponding diffusive dyna
cal ~Smoluchowski! equation. Panels c and d: the two macrost
distribution and window functions.~B! Macrostate clustering of
items in a one-dimensional space. Panel a: the positions of the i
in the univariate measurement space. Panel b: graphical repres
tion of the zeroth and the first eigenvectors ofG; the height of the
bar at the position of itemi corresponds to its component within th
indicated eigenfunction. Panels c and d: the components of the
window vectors corresponding to the left (wa) and right (wb) clus-
ters.
4-2
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MACROSTATE DATA CLUSTERING PHYSICAL REVIEW E67, 056704 ~2003!
and the ‘‘slow’’ right eigenfunctionw1. If c1.0, p(x;0) will
have a probability excess~relative to peq) for x,0 and a
deficiency forx.0. These overall deviations from equilib
rium will decay away as exp(2g1t)→0. The ‘‘fast’’ eigen-
functionswn.1 will have more nodes thanw1 and their more
rapid decays will transport probability over smaller region

Sufficiently large potential energy barriers can separ
configuration space into localized, dynamically metasta
macrostate regions, each having the property thatt local, the
time scale for relaxation ofp(x;t) towardspeq(x) within the
region, is much less thantglobal, the time scale for probability
to enter or leave the region.t local andtglobal are determined
by the eigenvalues, and a disparity between them will co
spond to a gap in the eigenspectrum. If there arem mac-
rostates, a gap will occur betweengm21 andgm : there will
be m slow modes generating intermacrostate probabi
equilibration, and the remaining fast modes will generate
tramacrostate relaxations.

For example, in Fig. 1~A! the energy barrier centered
x50 separates configuration space into two macrostatea
andb ~roughly containing the regionsx,0 or x.0, respec-
tively!. Correspondingly, there is a spectral gapg1!g2; so
m52. g1 is the rate of the slow transfer of probability b
tweena and b,which is generated by the slow decay of t
amplitude ofw1. Thus,tglobal;g1

21. The larger values of the
gn.1 correspond to the fast decays of the more-rapidly va
ing wn.1, corresponding to intramacrostate probability r
laxations. The slowest of these rates,g2, determines the time
needed for local equilibration. Thus,t local;g2

21.
In this simple case, it is tempting to ‘‘crisply’’ define th

macrostates by inspection as the regionsx.0 and x,0.
However, this is inapt for two reasons:~1! A sharp boundary
at x50 introduces high-frequency dynamical modes a
thus is incompatible with a consistent low-frequency d
namical description; and~2! subjective inspection and barrie
identification are not possible in multidimensional problem
Instead, we use this example to show how the correct fu
macrostates can be identified~without subjective inspection!
by a generalizable algorithm:

The starting point is the recognition of the spectral g
g1!g2. Whent.g2

21, the values ofp(x;t) for all x,0 or
all x.0 will be highly correlated, and relative equilibrium
within ~but not between! these regions will be achieved
Therefore, in this temporal regime,p(x;t) can be well ap-
proximated by an expansion within the rank-2~in general,
rank-m) macrostate subspacespanned byw0 and w1, and
only the first two terms in the summation in Eq.~3! need to
be kept. To obtain a probabilistic description, we replace
truncated eigenfunction expansion by an expansion in
alternative basis provided by the non-negativemacrostate
distributionsqa(x) and qb(x) ~to be defined precisely be
low! shown in Fig. 1~A!, panels c and d.qa ~or qb) is
approximately proportional tow0 for x,0 ~or x.0) and'0
for x.0 ~or x,0). Thus, Eq.~3! can be replaced by th
macrostate expansion

p~x;t !'(
a

pa~ t !qa~x!, ~4!
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where greek letters index macrostates and sums over g
letters indicate sums over all macrostates.@We assume the
normalization*qa(x)dx51.] Sinceqa andqb have signifi-
cant support only forx,0 andx.0, respectively,pa(t) and
pb(t) specify the time-dependent amounts of probability
these regions. Their dynamics are described by the coa
grainedmacrostate master equation

dpa~ t !

dt
5(

b
pb~ t !Gba , ~5!

whereGba is themacrostate transition matrix. As t→`, Eq.
~4! reduces to

lim
t→`

p~x;t !5w05(
a

pa
eqqa~x!. ~6!

wherepa
eq is the total probability contained in the macrosta

regiona at equilibrium.
Theqa implicitly define the macrostate regions. To ma

this explicit, we definemacrostate window functions

wa~x![
pa

eqqa~x!

w0~x!
. ~7!

Equation~6! and the non-negativity ofqa imply that

wa~x!>0 ; a,x ~8a!

(
a

wa~x!51 ; x. ~8b!

wa(x) specifies the probability of assignment of microstatx
to macrostatea. The window functions corresponding toqa
andqb are shown in Fig. 1~A!. They define a fuzzy dissec
tion of configuration space into the macrostate regionsx
,0 andx.0.

Now we can address the precise definition of theqa
themselves. Since they span the macrostate subspace,
must be linear combinations of the slow eigenfunctions:

qa~x!5 (
n50

m21

Manwn~x!. ~9!

Since thewn are smooth, theqa , and hence thewa , must
also be smooth. This induces an unavoidable uncertaint
microstate assignment. For example, in Fig. 1 the ass
ments are almost certain foruxu@0, wherewa'1, but are
highly uncertain forx'0 wherewa(x)'0.5. The essentia
point is to chooseM, and hence theqa and wa , so as to
maximize certainty. We defineYa , the uncertaintyof mac-
rostatea, as the sum of its equilibrium probability-weighte
overlaps with the other macrostates, relative to its to
probability:1

1This definition is motivated by an analysis of the experimen
macrostate preparation and measurement process@24#.
4-3
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Ya[

(
bÞa

E wa~x!wb~x!peq~x!dx

E wa~x!peq~x! dx

. ~10!

Using Eqs.~6!, ~7!, and~8b!, themacrostate certaintyȲa is

Ȳa[12Ya5~pa
eq!21E wa

2~x!peq~x!dx. ~11!

We chooseM so as to maximize the geometric mean of t
Ȳa subject to the constraints of Eq.~8!. This minimum un-
certainty criterionminimizes macrostate overlap and, in th
example of Fig. 1~A!, results in theqa and wa shown in
panels c and d. The amount of overlap of these optimi
macrostate functions depends on the magnitude of the s
tral gap.

B. Adapting macrostate coarse graining to data clustering

To adapt the physical coarse graining procedure to d
clustering, we make the computational analogy$microstates,
macrostates,G% ↔ $items, clusters,f (D21)%. In this anal-
ogy, the continuous configuration space of microstatesx is
replaced by a discrete space of itemsi :1< i<N, and the
probability distributionp(x,t) is replaced byp(t), the vector
of individual item probabilitiespi(t) @e.g., see the simple
example in Fig. 1~B!#. Sincep(t) is a probability vector, it
must satisfy

pi~ t !>0 ; i ,t, ~12a!

1•p~ t !51 ; t, ~12b!

where

1i51 ; i .

By analogy with Eq.~2!, we assume that the dynamics
the item space are described by the microscopic master e
tion

dp~ t !

dt
5Gp~ t !, ~13!

whereG is a first-order transition matrix. Non-negativity o
eachpi(t) under time evolution requires that

G i j >0, iÞ j ~14!

and conservation of probability requires that

1•G50. ~15!

The central assumption of the analogy is to assume
G i j ( iÞ j ) depends onDi j , the dissimilarity between itemsi
and j. If D were embedded as a distance matrix in a me
space~e.g., as when it is computed from a measurem
matrix X), thenG could, in principle, be computed by solv
ing a multidimensional diffusion equation in the continuo
space. However, this would be extremely expensive. Inst
05670
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we modelG from D using the following heuristic argumen
A starting point is to setG i j 5(Di j )

22 by analogy to the rate
of diffusion between two isolated microstates in one dime
sion. However, this does not account for the interception
probability flux by intervening items. To model interceptio
we use an exponential cutoff scaled to the mean near
neighbor squared distance^d0

2&:

G i j 5
e2(Di j )

2/2^d0
2&

~Di j !
2

, iÞ j , ~16a!

^d0
2&5N21(

i 51

N

~Di ,!2, ~16b!

whereDi , is the smallest element in thei th row of D. The
diagonal elements ofG are fixed by Eq.~15!.

G defined by Eq.~16! is symmetric, so its left and righ
eigenvectors are identical. Therefore, Eq.~15! implies that

G•150 ~17!

and the equilibrium probability vectorpeq is

peq5N211. ~18!

Equation~14! and the symmetry ofG imply that all its
eigenvectorswn are orthogonal and that all its eigenvalue
2gn are nonpositive~see Appendix B!. It is convenient to
use bra-ket notation to indicate the renormalized inner pr
uct

^xuy&[N21x•y, ~19!

and to normalize the eigenvectors so that

^wnuwm&5dnm . ~20!

Then,

w051. ~21!

Figure 1~B! illustratesw0 andw1 computed in this way for a
simple case ofN520 items in a one-dimensional measur
ment space.

Since all the elements ofw0 are identical, the vector ana
log of Eq. ~7! is trivial and the macrostate distributions an
window functions are directly proportional to each oth
Therefore, we simplify by expressing them cluster window
vectorsdirectly in terms of them slow eigenvectors~for now
we assume thatm has been specified!:

wa5 (
n50

m21

Manwn . ~22!

Analogous to Eqs.~8!, thewa satisfy the positivity and sum
mation constraints required for a probabilistic interpretatio

~wa! i>0 ; a,i , ~23a!
4-4
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(
a

wa51. ~23b!

Equations ~21! and ~23b! and the orthonormality of the
eigenvectors implies them summation constraints onM

(
a

Man5dn0 . ~24!

By analogy to Eq.~11!, the certainty of clustera is

Ȳa~M !5
^wauwa&

^1uwa&
. ~25!

As in the continuous case, 0<Ȳa<1. Maximizing the geo-
metric mean ofȲa is equivalent to minimizing the objectiv
function

F~M ![2(
a

ln Ȳa~M !. ~26!

Minimization of F, consistent with the linear constrain
of Eq. ~24! and the linear inequality constraints of Eq.~23a!
fixes M, and hencewa , for a specified value ofm. The so-
lution of this global optimization problem is discussed
Appendix A. There we show that the resultantwa are linearly
independent, so they provide a complete basis for the m
rostate subspace. Once thewa have been computed, we com
plete the clustering procedure form by assigning each itemi
to the clustera having the maximal value of (wa) i . We say
that the assignment is ‘‘strong’’ or ‘‘weak’’ depending o
how close this maximal value, theitem assignment strength,
is to 1. The assignments are extremely strong for the
ample shown in Fig. 1~B! ~re panels c and d! because of the
relatively large separation between the two clusters.

In some cases, the procedure may define a cluster
only a single item. In this caset local is undefined and there i
no meaningful dissection of dynamics into slow and fast p
cesses. Therefore, we treat such outliers by a special pr
dure. When one is identified, it is removed from the data
and the pruned dataset is reanalyzed. The pruning proce
is repeated if new outliers appear. We designate the fi
clustering asC(m).

C. Determining the number of clusters

We use two conditions to determine ifC(m) is anaccept-
able clustering: As motivated above, we examine th
eigenspectrum ofG for spectral gaps, which are defined a

gm /gm21.rg , ~27!

whererg is theminimum gap parameter. However, Eq.~27!
alone may accept excessively fuzzy clusters having w
item assignment vectors. To eliminate these, we supplem
Eq. ~27! with the minimum macrostate certainty condition

Ȳa.rY ; a. ~28!
05670
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We have found that choosingrg53 andrY50.68 ~the frac-
tion of the normal distribution contained within one standa
deviation of the mean! works well for all the problems tha
we have tested~see Sec. III!.

The complete algorithm is to sequentially computeC(m)
for m52,3, . . . and totest these clusterings for acceptabili
according to Eq.~28!. If multiple clusterings are acceptable
we will usually be most interested in the one of largestm,
since it provides the finest resolution. As a practical matte
C(m) is not acceptable for three consecutivem’s we assume
that it will not be acceptable for higherm’s and terminate the
analysis.

D. Computational implementation

Only two steps in the procedure are potentially expens
computing the slow eigenvectors and eigenvalues ofG and
the global minimization ofF(M ). Since we only use a rela
tively small number~typically m,10) of slow eigenvectors
it suffices to compute only these via the Lanczos meth
@27# at cost;O(N2). The global minimization ofF(M ) is a
linearly constrained global optimization problem inm(m
21) dimensions. The number of vertices of the feasi
region-bounding polytope increases withN, formally as a
polynomial dependent onm. However, at least for the prob
lems tested here, a simple minimization algorithm is a
equate~see Appendix A!.

III. RESULTS

We tested the method on a number of problems that h
challenged other clustering methods. Bivariate problems
which the dataset can be graphically displayed in two dim
sions were used to enable subjective evaluation of the qu
of the results. In addition, to check that performance did
depend on low dimensionality of the data space, we tes
problems where the items were embedded in a
dimensional space.

A. Bivariate test cases

The algorithm was evaluated on four previously describ
difficult test cases. In each case, the dataset consiste
NM52 measurements on each ofN items. These can be rep
resented asN points in a two-dimensional space. For e
ample, the ‘‘crescentic’’ clustering problem shown in Fi
2~a! consists of 52 items, each represented as a point in
two-dimensional measurement space. The two clusters
closely juxtaposed crescents, which makes the problem
ficult @28,2#. The D matrix was computed from the coord
nates using Eq.~1! with gab5dab , and G was computed
from D according to Eqs.~16!. The slowest eigenvectors
w0 , w1, andw2, are graphically displayed in panels b, c, a
d, respectively. As per Eq.~18!, all components ofw0 are
identical. It is gratifying to see thatw1 clearly reflects the
two-cluster structure: the components of all the items in
bottom-right crescent are positive, while the components
all the items in the other crescent are negative. The n
eigenvectorw2 has three localized regions of same-sign co
ponents. Subjectively, it is clear that separating into th
4-5



th
a
ru

e

ec

ga
a is-

se
ign-

he

y
ian
the

us-

-
the

. It
ag-

l
er of
the
’’
a

ol.

c-
o

ed
-
ure-
cept
liers
qs.

D. KORENBLUM AND D. SHALLOWAY PHYSICAL REVIEW E 67, 056704 ~2003!
regions would overdissect the space. As predicted by
discussion above, these eigenvector properties in the sp
domain correspond in the time domain to an eigenspect
gap betweeng1 andg2 ~Fig. 2 and Table I!. In contrast, there
is no gap betweeng2 andg3 ~Fig. 2!. This suggests that th
m52 clustering, but not them53 clustering, will be accept-
able.

The task for the algorithm is to recognize that the corr
clustering is embedded in the structure ofw1, and to define
the proper clustering. Applying it form52, 3, . . . yields the
clusters shown in the top panels of Fig. 3.~For illustration,
we display clusterings that do not satisfy the spectral
condition, even though these would not be computed by
efficient algorithm.! The cluster certaintiesȲa are listed in

FIG. 2. ‘‘Crescentic’’ clustering problem and its slow eigenve
tors. ~a! The x and y coordinates of each point correspond to tw
measurement values of the corresponding item.~b!–~d! w0 , w1, and
w2, respectively. For illustration, the amplitude of thei th compo-
nent of eachwn is represented by the height~if positive! or depth~if
negative! of a cone centered at positioni. The relative magnitudes
of the corresponding eigenvalues are indicated.

TABLE I. Crescentic cluster analysis.

m

gm

gm21 Ȳa(m)

2 3.52 0.71
0.70

3 1.12 0.67
0.41
0.53

4 2.73 0.83
0.81
0.51
0.53

5 1.03 0.71
0.47
0.55
0.38
0.38
05670
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Table I. Them52 clustering satisfies both Eqs.~27! and
~28!, and all clusterings withm.2 fail both criteria. There-
fore, the algorithm correctly selectsm52 clusters. The indi-
vidual item assignment strengths for this clustering are d
played in Fig. 4; most are in the range of 0.720.9, indicating
that there is significant fuzziness resulting from the clo
juxtaposition of the clusters. Nonetheless, all the item ass
ments are made correctly.

The following three test problems were analyzed in t
same way.

~1! The ‘‘intersecting’’ problem consists of two barel
contacting sets of items having highly anisotropic Gauss
distributions. It has previously been used to demonstrate
weakness of nonparametric optimization clustering for cl
ters of greatly different shapes and sizes@2#.

~2! The ‘‘parallel’’ problem consists of two highly ex
tended, anisotropic sets of items whose separation along
vertical axis is much smaller than their horizontal extent
has previously been used to demonstrate the failure of
glomerative hierarchical methods@2#.

~3! The ‘‘horseshoe’’ problem@3# consists of a centra
cluster of items surrounded by a horseshoe-shaped clust
items. The center of mass of the outer cluster lies within
inner cluster, increasing difficulty. In addition, a ‘‘random
test set, in which points were randomly distributed within
square two-dimensional region, was analyzed as a contr

FIG. 3. Bivariate test cases. The algorithmically determin
clusteringsC(m) for 2<m<5 are displayed for four bivariate ex
amples in which the items are points in a two-dimensional meas
ment space. Clusters are distinguished by different symbols, ex
that unfilled squares identify items that were designated as out
by the algorithm. The acceptable clusterings, which satisfy E
~27! and ~28!, are outlined by dark boxes.
4-6
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MACROSTATE DATA CLUSTERING PHYSICAL REVIEW E67, 056704 ~2003!
The results obtained form52, 3, 4, and 5 are illustrated
in Fig. 3. The acceptable clusterings that satisfy Eqs.~27!
and~28! are outlined by dark boxes. Only a single clusteri
is acceptable in each case~although this need not be so i
general!. None of the random control clusterings are acce
able, correctly indicating that it should not be clustered.

As with the crescentic problem, the clustering solution
the ‘‘horseshoe’’ test-case~fourth row, Fig. 3! is straightfor-
ward, with m52. Cluster certainties~Table II! and item as-
signment strengths~Fig. 4! are extremely strong (.0.99).
The ‘‘parallel’’ problem is slightly more challenging, in tha
two of the items~located at the extreme left and right sides
the item distributions! are identified as outliers. Nonetheles
the algorithm correctly identifies them52 clustering of the
nonoutlying items. As expected, the item assignm
strengths are lower for the items in the central overlapp
region, and higher for the nonoverlapping items near the
and right edges~Fig. 4!.

The solution to the ‘‘intersecting’’ problem is more elab
rate: While them52 solution is subjectively acceptable, th

FIG. 4. Item assignment strengths for the acceptable clusteri
The acceptable clusterings for each of the problems in Fig. 3
shown. The height of the dark section of the bar relative to its to
height at the position of an item indicates its assignment streng

TABLE II. Bivariate test-case analyses.

Problem m

gm

gm21 Ȳa(m)

Crescentic 2 3.52 0.71
0.70

Intersecting 4 3.82 0.91
0.95
0.84
0.94

Parallel 2 10.68 0.93
0.93

Horseshoe 2 60.73 0.998
0.99

Random 1
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assignment strengths of some of the items in the vicinity
the intersection have weak item assignment strengths. Du
of this, them52 and m53 clusterings do not satisfy th
required assignment certainty condition, Eq.~28!, and are
rejected by the algorithm. The acceptablem54 clustering
resolves this difficulty by segregating these uncertain ite
into a separate small cluster. It also segregates two out
~in the top-right corner! while assigning most of the items t
two major clusters, as desired. The individual item assi
ment strengths are strong, except for one item near the in
section of the three clusters~Fig. 4!.

None of theC(m) are acceptable for the ‘‘random’’ distri
bution of items because all of thegm /gm21 were ,2.5 for
m.1. Thus, the algorithm is not misled into spurious clu
tering.

B. Gaussians with varying overlap in two and 20 dimensions

We systematically tested the performance of the algorit
as a function of the relative distance between clusters.
this purpose, four pseudorandom groups of 50 items w
generated with Gaussian kernels having variancel,

2. The
centers-of-mass of the groups were themselves pseudo
domly selected from a Gaussian kernel having variancelg

2

~see Fig. 5!. The corresponding ratio of the expected roo
mean-square~rms! intercluster item-item separations to th
rms intracluster item separations is

A^~DR!2& inter

^~DR!2& intra

5A~l,
21lg

2!/l,
2 . ~29!

Tests in a bivariate measurement space were conducte
lg /l, varying from 16~where the clusters were highly sep
rated! down to 2~where the clusters were completely ove
lapping!. The algorithm dissects the items into four cluste
when lg /l,516. Whenlg /l,58 andlg /l,54, the top
two groups partially merge~see Fig. 5!, and the algorithm
accordingly reportsm53 clusters. The clusters are not su
jectively separable forlg /l,52; correspondingly, the algo

s.
re
l
.

FIG. 5. Clustering of Gaussian-distributed items in two dime
sions for various cluster separations. Top: the unique accept
clustering for each value oflg /l, is indicated. Bottom: the heigh
of the dark section of the bar at the position of an item indicates
assignment strength.~Most of the strengths are'1.)
4-7
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D. KORENBLUM AND D. SHALLOWAY PHYSICAL REVIEW E 67, 056704 ~2003!
rithm reportsm51 cluster. The assignment strengths f
these clusterings are displayed in Fig. 5.

The same test was performed with four groups genera
as described above using Gaussian kernels in a
dimensional space. The increased dimensionality does
alter Eq.~29!. However, the distributions of the intergrou
and intragroup squared-distances are narrower: the stan
deviations of the intergroup and intragroup (DR)2 normal-
ized by their means are both smaller by factors ofA20/2
5A10. Therefore, for a given value oflg /l, , clustering is
actually easier in higher dimensionality. To compensate
make the 20-dimensional test more challenging, the rang
lg /l, was reduced by a factor of 4~roughly matchingA10);
i.e., lg /l, was varied from 4 down to 0.5. The algorith
correctly identifies the four clusters forlg /l,54 and
lg /l,52. The individual item assignment strengths of the
clusterings are displayed in Fig. 6. These are all close to
for lg /l,54 andlg /l,52, indicating unambiguous clus
tering. At smaller values oflg /l, , the only clustering sat-
isfying both the minimum gap and minimum certainty co
ditions has one cluster containing all the items. Even so,
lg /l,51, the~formally unacceptable! m53 clustering cor-
rectly reflects some of the group structure~Fig. 6!.

IV. DISCUSSION

We have shown that macrostate clustering performs w
on a variety of test problems that have challenged ot
methods. The method only needs a dissimilarity matrixD
~not a data matrixX) and has the advantage of bein
nonhierarchical,2 which should improve performance, i
general. Beyond identifying potential clusterings, it uses
ternal criteria—the eigenspectrum gapsgm /gm21 and the
cluster certaintiesȲa—to determine the appropriate numb
of clusters. The corresponding acceptance parametersrg and
rY were empirically determined and gave robu
performance—a single choice worked well for all the pro
lems tested.

Eigenvectors have previously been used for clustering
many different spectral graph theory~SGT! partitioning
methods: SGT bipartitioning methods use the values ofw1 to
define a one-dimensional ordering of the items which c
then be divided by a heuristic. A variety of different a
proaches have been developed to extend this to mul
eigenvectors and clusters~see Refs.@18,19,21,23# for re-
view!. For example, recursive spectral bipartitioning gen
ates a hierarchical binary tree@22#; some methods usek
eigenvectors to define 2k clusters@29#; and many methods
project the items into the subspace spanned byk eigenvectors
and then use a partitioning heuristic to identify cluste

2For example, them55 ‘‘crescentic’’ clustering cannot be ob
tained by subdividing itsm54 clustering and them54 ‘‘horse-
shoe’’ clustering is not hierarchically related to itsm53 clustering.
Nevertheless, inherent hierarchical structure can still emerge,
some was evident in all the problems. For example, all the clus
ings for 2<m<5 for the ‘‘intersecting’’ and ‘‘parallel’’ problems
are hierarchically related~Fig. 3!.
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within the subspace~e.g., Refs.@8,19,23,30–32#, and refer-
ences therein!.

Macrostate clustering is different because it compu
continuous~fuzzy! assignment window vectors rather tha
partitionings.3 This has important ramifications: It permit
the window vectors to be expressed as linear combination
the eigenvectors@see Eq.~22!#; this necessarily results in
window function overlap and cluster uncertainty. Combini
these concepts with the principle of uncertainty minimizati
provides a simple prescription for the concurrent use of m
tiple eigenvectors in clustering. A related difference is th
the number of clusters is internally determined in macros
clustering, while it is usually fixeda priori or determined by
eigensystem-independent heuristics in SGT methods~e.g.,

nd
r- 3Drineas et al. @6# consider real-valued ‘‘generalized clusters
within a SGT context, but these are indefinite and do not hav
probabilistic interpretation.

FIG. 6. Item assignment strengths for cluster solutions for v
ous group separations in 20 dimensions. Items were pseudo
domly distributed into four groups in a 20-dimensional measu
ment space for different values oflg /l, as described in the text
The items within each group have consecutive serial numbers~i.e.,
items 1–50 are in the first group, 51–100 are in the second gr
etc.!. Their assignment strengths for the indicatedC(m) clusterings
are displayed in each case.~Item 171 is an outlier for both cluster
ings shown in the bottom row; hence it is not assigned to a
cluster.! However, only them54 clusterings forlg /l,54 and
lg /l,52 are acceptable;C(3) andC(2) shown in the bottom pan
els fail the acceptability conditions of Eqs.~27! and~28! because of
their low cluster certainties.
4-8
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MACROSTATE DATA CLUSTERING PHYSICAL REVIEW E67, 056704 ~2003!
Refs. @18,19,23#, and references therein!. It is perhaps sur-
prising that the spectral gap condition has not been used
this purpose in SGT approaches.4 This may reflect the fac
that it does not work well by itself, and the companion min
mum cluster certainty condition is not available wh
~crisply! partitioning. Macrostate and SGT clustering al
differ in the manner in whichG ~or the SGT analog! is com-
puted from the dissimilarity matrixD. SGT methods typi-
cally use a weight matrix equivalent toG i j 5exp(2Dij /s), i
Þ j , wheres is an empirically-determined scale constant.
contrast, motivated by the analogy to a diffusive system,
used Eqs.~16!. While this difference is not of fundamenta
significance, the relationship betweenG and D can affect
performance. Thus, it may be helpful to test the use of E
~16! in SGT methods or the SGT relationship in macrost
clustering.

The use of a linear transformation from indefinite, o
thogonal eigenvectors to semidefinite, nonorthogonal w
dow vectors is fundamental, but some freedom remain
the choice of the objective function used to determine
optimal transformation and in the conditions used to de
mine acceptable clusterings. An uncertainty minimizat
criterion is a natural choice, since it is~in an information-
theoretic sense! the entropic counterpart to the~implicit!
‘‘energy’’ minimization criterion that focuses attention on th
slow eigenvectors~see Sec. II C of Ref.@26#!. On the other
hand, the definition of uncertainty could be modified a
tested for improved performance. Similarly, while we belie
that it is advantageous to combine energetic~spectral gap!
and entropic~cluster certainty! conditions in determining the
number of clusters, it may be possible to improve upon
specific criteria used here.

Other improvements and extensions requiring atten
are the following.

~1! While we accepted or rejected each clusteringin toto,
it may be useful in some cases to examine incomplete c
terings in which only some of the clusters satisfy the clus
certainty condition. This modification would enable the alg
rithm to resolve all four clusters for the case oflg /l,58 in
Fig. 5.5

~2! The individual item assignment strengths (wa) i mea-
sure the certainty of each assignment, but their precise
tistical significance is not known. It would be helpful to ha
a model for assessing this.

~3! The cluster transition matrixgba5^wbuGuwa& can be
used to assess the strength of the relationship between
clusters and may be useful in setting the cluster accepta
criteria.

~4! We have definedG as a symmetric matrix, which im

4However, spectral gaps have been used heuristically to deter
the appropriate dimensionality of singular subspaces in data mi
@33#.

5The m55 solution identifies the four major clusters with stron
certainty, but also groups three items~located near the boundar

between the two top clusters! into a fifth cluster which hasȲa

,rY . In an incomplete clustering, all but these three items wo
be unambiguously assigned.
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plies thatpeq}1. However, this restriction is not required
The generalization to asymmetricG is straightforward@24#
and it could be used to incorporate additional experimen
information. For example, if itemi is knowna priori to be
partially redundant with other items~e.g., when analyzing
expression levels of members of gene families!, it may be
given reduced weight in the analysis by settingpi

eq,1.
Our main goal has been a proof-of-principle demonst

tion of the high quality of the clusterings provided by th
dynamical macrostate approach. The current implementa
is sufficiently efficient for problems whereN;O(102), but
we have not examined performance for very large proble
The continuous formulation replaces the nonpolynomial-h
~NP-hard! combinatoric SGT partitioning problem with
global minimization problem having polynomial complexi
in N. However, the order of the polynomial can be very lar
for largem ~Appendix A! so, formally, this is not much of an
improvement. Nonetheless, as discussed in Appendix
since the objective function is smooth and the constraints
highly degenerate, a simple minimization algorithm h
worked well and we believe that it will be possible to obta
adequate approximate solutions efficiently, even for v
large problems. This remains to be examined.
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APPENDIX A: MINIMIZING F„M …

F(M ) is to be minimized as a function of them2 ele-
ments ofMan within the feasible region specified by them
3N linear inequality constraints of Eq.~23a!. The rows ofM
can be regarded as the coordinates ofm particles in the
m-dimensional space of the slow eigenvectors. Designa
the coordinate row vector of particlea as MW a
5(Ma0 ,Ma1 , . . . Ma(m21)), M is the outer product of the
MW a’s:

M5 ^

a
MW a . ~A1!

The equality constraints of Eq.~24! imply that the center of
mass of them particles is at position

1

m (
a

MW a5
«̂0

m
, ~A2!

where«̂0 is the unit vector in the zeroth direction:

«̂05~1,0, . . . ,0!. ~A3!

@Equation~A3! must be modified when there is more tha
one stationary eigenvector; see Appendix B.# The feasible
region is a polytope in them(m21)-dimensional subspac
where Eq.~A2! is satisfied.

ne
g

d

4-9



-

r

th
e

h

ts
ts

o

a
-

a

n-
t
-

e.
-

st

-
he
his
w-

-

e
in-

fea-

emal
00

-
es of
-

Eq.
ely
vec-
c-
of
t
i-
cal

t that
ve

D. KORENBLUM AND D. SHALLOWAY PHYSICAL REVIEW E 67, 056704 ~2003!
The minimum ofF(M ) must lie at a vertex of this poly
tope.

Proof. The gradient ofF with respect toMW a is

¹W aF[
dF

dMW a

522
MW a

uMW au2
1

«̂0

MW a+ «̂0

~A4!

and the Hessian is

¹W a ^ ¹W bF[
d2F

dMW adMW b

52dabF 2I

uMW au2
24

MW a ^ MW a

uMW au4

1
«̂0^ «̂0

~MW a+ «̂0!2G , ~A5!

whereI is them3m identity matrix and+ denotes the inne
product over the eigenvector indices,

xW +yW[ (
n50

m21

xnyn .

The gradient does not vanish anywhere, soF has no mini-
mum in the absence of constraints.

In fact, a minimum will occur only whenall m2 degrees
of freedom are constrained by them equality constraints and
m(m21) inequality constraints. To see this, consider
situation without the equality constraints, but with som
numberc<m(m21) of active inequality constraints. Eac
active inequality constraint acts~identified by item indexi!
on a singlewa , so by Eq.~22! it acts on a singleMW a to
enforce

MW a+w¢ i50, ~A6!

where w¢ is the supervector having componen
(w0 ,w1 , . . . ,wm21). Therefore, the inequality constrain
are separable and, similar to Eq.~A1!, the space of inequality
constrainedM ’s can be expressed as the outer product
the subspaces of inequality constrainedMW a’s. Thus, if
Mc5 ^ aMW a

c is an inequality-constrained minimizer ofF, it
must be stable with respect to independent variations of e
of the inequality constrainedMW a

c . However, this is not pos
sible: For any such variationMW a

c →MW a
c 1dW a , the existence of

a minimum would require that

dW a+¹W aF50 ~A7!

and

dW a+~¹W a ^ ¹W a!F+dW a.0. ~A8!

However, Eqs.~A4! and ~A7! imply that

MW a+dW a

uMW au2
5

dW a+ «̂0

2MW a+ «̂0

,

and combining this with Eq.~A5! implies that
05670
e
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dW a+~¹W a ^ ¹W a!F+dW a52
2udW au2

uMW au2
,0.

Thus, Eqs.~A7! and ~A8! cannot both be true. Therefore,
minimum can occur only ifall variations of theMW a are
prevented by a combination of inequality and equality co
straints. Since there are onlym equality constraints, we mus
havec5m(m21) active inequality constraints. This corre
sponds to a vertex of the feasible region.

Note also that the minimizing$MW a
c % must be linearly in-

dependent within them-dimensional slow eigenvector spac
This implies that the associated$wa% must span the mac
rostate subspace.

Proof. If the $MW a
c % are not independent, there would exi

a linear combination of vectors such that

(
a

jaMW a
c 50.

Then, the combined variation

MW a
c →MW a

c 1djaMW a
c , ;a,

whered is a small number, will not affect the equality con
straint, Eq.~A2!. As proven above, all the components of t
constrained minimum must be fixed by constraints, so t
variation must be excluded by an inequality constraint. Ho
ever, this variation only rescales eachMW a

c and hence each
wa . Therefore, it also will not affect the inequality con
straints and is permitted, contrary to assumption.Reductio ad
absurdum.

To find the vertex with the lowest value ofF, we used a
simple minimizer that operates in them(m21)-dimensional
subspace that remains after one of theMa has been explicitly
eliminated using Eq.~A2!. The minimizer starts fromMW a

5 «̂0 /m ;a chooses a random direction in th
m(m21)-dimensional space, proceeds to the nearest
equality constraint, and then proceeds along faces of the
sible region~of decreasing dimensionality! until a vertex is
reached. This process was repeated until the same extr
minima was found three times or for a minimum of 500 0
trials, whichever was greater.

Accounting for the separability of the inequality con
straints and assuming no degeneracies between the valu
the wW n ~the usual case!, the number of vertices of the con
straining polytope might grow as rapidly asO(Nm). How-
ever, we expect that most of the inequality constraints of
~23a! will be almost degenerate because of the relativ
small differences between the components of the eigen
tors at different items within a cluster. Moreover, the obje
tive functionF is smooth, so we expect that the variation
F over nearby vertices will be small. Therefore, it will no
affect wa much if a neighbor, rather than the global min
mizer itself, is found. Thus, we anticipate that the practi
growth in computational cost withN will be much less than
the worst-case bound. These considerations also sugges
it will always be advantageous to use solvers that mo
4-10
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through the @m(m21)21#-dimensional space of search
space directions rather than between vertices of the c
straining polytope.

APPENDIX B: DEGENERATE ‘‘ZERO’’ EIGENVALUES

SinceG is a symmetric matrix that satisfies Eqs.~15! and
~17!,

2x•G•x5(
j . i

i

G i j ~xi2xj !
2 ~B1!

for any vectorx. The right-hand side~rhs! can be viewed as
the potential energy ofN particles having pairwise quadrat
interactions in one dimension. Since all the off-diagonal
ements ofG are positive, the rhs must be non-negative. T
implied nonpositivity ofx•G•x for all x implies that all the
eigenvalues ofG must be nonpositive. Furthermore, the is
morphism makes it evident thatx51 is the only stationary
eigenvector ~up to a multiplicative constant! unless the
dataset contains anisolated subsetS, which hasG i j 50 if i
r-

, i
o

ci.

n

d
.

05670
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PS and j ¹S. In this case,G will have multiple zero eigen-
values, and there will be one stationary eigenvector co
sponding to each isolated subset. This degeneracy ca
removed by analyzing each isolated subset independent

It is more common to encounter approximate isolation
which none of theG i j is exactly zero but in which there ar
multiple small eigenvalues that are 0 on the scale of num
cal accuracy.~This occurs in the Gaussian clustering proble
shown in Fig. 5 whenlg /l, is large.! This can cause nu
merical problems:wW 0 returned by a numerical eigensyste
solver will not necessarily satisfy Eq.~21!, but instead will
be a linear combination of the approximately degener
eigenvectors. Due to this, Eq.~21!, and hence Eq.~24!, may
not be true.

The simplest resolution of this numerical problem is
replace Eq.~24! with Eq. ~A2! and to replace Eq.~A3! with

«̂05^1uw¢ &. ~B2!

This does not require the numerical validity of Eq.~21!.
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