PHYSICAL REVIEW E 67, 056704 (2003
Macrostate data clustering
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We develop an effective nonhierarchical data clustering method using an analogy to the dynamic coarse
graining of a stochastic system. Analyzing the eigensystem of an interitem transition matrix identifies fuzzy
clusters corresponding to the metastable macroscopic $tagesostatesof a diffusive system. A “minimum
uncertainty criterion” determines the linear transformation from eigenvectors to cluster-defining window func-
tions. Eigenspectrum gap and cluster certainty conditions identify the proper number of clusters. The physi-
cally motivated fuzzy representation and associated uncertainty analysis distinguishes macrostate clustering
from spectral partitioning methods. Macrostate data clustering solves a variety of test cases that challenge other
methods.
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[. INTRODUCTION between 1 andl. In these methods, the choice of the optimal
number of clusters is an independent prob(&y®,10. “Ag-

Finding subgroups oclusterswithin large sets oftemsis glomerative” hierarchical methods iteratively join items to-
a problem that occurs in many contexts from astronomy tcg_ether to form_a decreasing number of Iarger Cluste_r_s;_“dlw-
integrated chip design and pattern recognitizee Refs. Sive” hierarchical methods use successive subdivision to
[1-4] for reviews. DNA microarray gene expression analy- 9enerate an increasing number of smaller clusters. While ag-
sis and bioinformatic sequence comparisons are recent afggomerative methods can be inexpensive, they usually use
important applications in molecular biologg,5]. only local and not global information, which weakens per-

The clustering problem may be posed in two ways: In thdformancel2]. While divisive methods can use global infor-
first case(e.g., DNA microarrays N,, measurements are mation, the_y can have high complexity Mand thus can be
made on ea.cr.{ of th items. TheN X I\'\l/l measurement ma- too expensive for large problems. A weakness of both types
trix X is then used in a pro'blem-spec'i\]ﬂic manner to comput of hierarchical methods is that they cannot repair defects

; N : ) %rom previous stages of analysis.
a symmetridN X N dissimilaritymatrix D. Each off-diagonal Some clustering methods are based on analogies to physi-

elementD;; provides an inverse indicator of the correlations ¢4 systems, in which macroscopic structure emerges from
between the measurements of itenasidj. A straightforward  mjcroscopically defined interactions. A number of them have

method is to set used analogies to statistical mechanical phase transitions
Ny 12 [11-15, while others have used chaofi&6] or quantum
_ B B mechanica[17] systems as analogs. Most of these have the
Dij= a%‘;l (Xia = Xja)Gan(Xio = Xjp) | @D advantage of being “fuzzy”—in addition to assigning items

to clusters, they provide a continuous measure of the prob-
whereg is a problem-specific Euclidean metric tensor. Thisability or strength of the assignment of each item.
allows preconditioning of the scales of the different measure- Clustering can also be performed by objective function
ments and, by using nondiagorgladjustment for measure- optimization. If there is am priori model for the structure of
ment correlationgparticularly important if some measure- the clusters in the measurement spéeg., as a collection of
ments are replicatgsStatistical noise and complexity can be Gaussians then a corresponding parametric objective func-
reduced by using singular-value decomposition to pretion can be used. Otherwise a nonparametric objective func-
identify principal components oK that span much of the tion may be useful. For example, graph theory clustering
variation in the measurement space. This facilitates identifimethods treat the items as nodes of a graph whose intercon-
cation of clusters “by eye” or with various heuristi¢e.g., necting edges have “affinities” or “weights” determined
Refs.[6-8]). from D (See Refs[18,19 for review). They typically use
In the second case.g., pairwise gene sequence compari-‘min cut” or “normalized cut” objective functions and
song, the primary data are measures of dissimilarities besearch for the(sometimes “balanced” graph partitioning
tween pairs of items: In this cageis defined, but there is no that minimizes the(sometimes normalizeédsum of the
measurement matriX and the elements d@ may not satisfy  weights of the cut edges. Spectral graph thg¢@6} methods
the triangle inequality. use the eigenvectors of the affinity matrigr the closely
Early clustering methods were “hierarchical,” generating related generalized Laplacian majrito assist the process.
open binary trees which cafdepending on the selected Spectral bipartitioning(See Refs[21] for history and re-
cross-sectiondissect the items into any number of clustersview), which uses one eigenvector, can be applied recur-
sively for hierarchical dissectiof22]; and the development
of nonhierarchical methods for the concurrent use of mul-
*Present address: Gene Network Sciences, Ithaca, NY 14850. tiple eigenvectors is an active topic of reseafshe Refs.
TElectronic address: dis2@cornell.edu [19,23 for reviews.
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We present here a nonhierarchical, fuzzy -clustering B
method that uses an analogy between data clustering and t . .
coarse graining of a stochastic dynamical system. The item: Continuous Discrete
are regarded as microstates that interact via a dynamicea v -1 @
transition matrixI', which is derived fromD. Clusters are - %

identified as the slowly relaxing metastable macroscopic *<°—t, —° = %
states(macrostatesof the system. These are computed by

) ) X ; 0 9

concurrently using multiple eigenvectors bfin the same b PAVAVA b [T} 0 [ THI l
way as the macrostates of a continuous diffusive system ar [ 1RL]

Wa

identified from the eigenfunctions of the Smoluchowski op-

Va w,
erator[24]. The number of clusters is algorithmically deter- ¢ N\ \ ‘¢ | N1
mined by the spectral properties and cluster overlap criteria
We demonstrate that the method can solve difficult problems =~ 9 Wp Wp
including ones in which the clusters are irregularly shaped d N _ [ d I

and separated by tortuous boundaries. - L
FIG. 1. Heuristic examplegA) Identifying the macrostates of a

continuous stochastic system in one dimension. Panel a: the poten-
Il. METHOD tial V(x) and eigenvalue spectrum. Panel b: the zeroth and the first
excited right eigenfunctions of the corresponding diffusive dynami-
cal (SmoluchowskKi equation. Panels c and d: the two macrostate
distribution and window functions(B) Macrostate clustering of
Coarse graining is used in nonequilibrium statistical phys-tems in a one-dimensional space. Panel a: the positions of the items
ics to reduce the dimensionality and complexity of the dy-in the univariate measurement space. Panel b: graphical representa-
namical descriptiofi25]. In the usual situation, the system is tion of the zeroth and the first eigenvectorslafthe height of the
initially described microscopically by a fine-grained first- bar at the position of itehcorresponds to its component within the
order equation specified over a configuration space of microndicated eigenfunction. Panels ¢ and d: the components of the two
scopic stategmicrostates Microscopic degrees of freedom window vectors corresponding to the lefty) and right v,) clus-
corresponding to very rapid motions are removedbyssi-  ters.
bly nonlineaj projection. This generates a coarse-grained
master equation with fewer degrees of freedom, which dep®{x)<exd—BV(X)], whereg is the inverse temperature in
scribes the slower dynamics of the system’s macrostategiverse energy units. If system dynamics are overdamped
Each macrostate corresponds to a subregion of configuratidie., diffusive, then the nonequilibrium probability distribu-
space that has been projected onto one value of the macrtien p(x;t) evolves in time according to the first-order
scopic parameters. For example, to describe Brownian mdSsmoluchowski equation
tion of pollen in water, théfast water molecule degrees of
freedom are projected out, leaving only {iséow) coordinate Ip(x;t) _f T(x.x")p(x’:)dx’
. . = XDp(x';tdx’, 2
of the pollen to parametrize the macrostates. In this example, ot
the macrostates are continuously parametrized, but they may . )
also be discrete. For example, to describe chemical reactionghereI’ is the kernel of an operator determined Yy the
each macrostate is a chemical state, a subregion of confofemperature, and the diffusion constant. Once the eigenfunc-
mation space which includes all vibrations, translations, andions and eigenvalues &f have been determined, the general
rotations of a specific metastable, covalently bonded arrang&olution to Eq.(2) can be expanded as
ment of atoms. -
Coarse-graining projections are not arbitrary: the utility of Y — — gyt
the resultant macroscopic description depends upon the ex- p(x,t)—ngo Cre " en(X), ®
istence of a sufficient disparity betweeli®®, the time scale
of the fast(projected-out motions (which generate ergodic- where the eigenvalues and right eigenfunctionsl’'ofare
ity within the macrostate and 79°°@ the time scale of the — v, and¢,(x), respectively, and the expansion coefficients
remaining slow motiongwhich are required for ergodicity c, are determined by the initial conditiopgx;0). (Without
between macrostatesAppropriate projections can some- loss of generality we normalize, so thatco,=1, and as-
times be chosen heuristically when the disparity betweersume that eigenfunctions are ordered according to the mag-
7°¢@ and 79°"¥ js Jarge and subjectively obvious. When this nitudes of their eigenvalugs.
is not so, projections into discrete macrostates can be se- We always havey,=0 and ¢q(x)=p*{x), correspond-
lected by analyzing the eigenspectrum of the microscopidng to the stability of the Gibbs-Boltzmann distribution. The
stochastic dynamics. This procedure is described in detail inther y,, are non-negative and determine the rates of relax-
Refs.[24,26. We summarize the salient points here. ation towards this equilibrium state. Whileg is non-
Consider the example illustrated in FigAl of a thermal negative everywhere, the other eigenfunctions take both
ensemble of systems having microscopic parametand  positive and negative values, and the exponential decays of
potential energy/(x). The bimodal equilibrium probability their amplitudes generate probability fluxes. For illustration,
density is given by the Gibbs-Boltzmann distribution Fig. 1(A), panel b displaygfor a selected temperatyre,

A. Macrostates and stochastic coarse graining—a brief
overview
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and the “slow” right eigenfunctionp,. If ¢;>0, p(x;0) will where greek letters index macrostates and sums over greek
have a probability excesgelative top®) for x<0 and a letters indicate sums over all macrostatgdle assume the
deficiency forx>0. These overall deviations from equilib- normalizationf 9 ,(x)dx=1.] Sinced, and¥, have signifi-

rium will decay away as exp{yt)—0. The “fast” eigen-  cant support only fok<<O andx>0, respectivelyp,(t) and
functionse,~; will have more nodes thap,; and their more  py(t) specify the time-dependent amounts of probability in
rapid decays will transport probability over smaller regions.these regions. Their dynamics are described by the coarse-

Sufficiently large potential energy barriers can separatgrainedmacrostate master equation
configuration space into localized, dynamically metastable
macrostate regions, each having the property #f4%, the dpa(t) =S p, 0T 5
time scale for relaxation gf(x;t) towardsp®qx) within the dt 4 Ps(OT ga:
region, is much less that?'°"@ the time scale for probability
to enter or leave the region®®® and 79°° are determined wherel 4, is themacrostate transition matris t—, Eq.
by the eigenvalues, and a disparity between them will corre¢4) reduces to
spond to a gap in the eigenspectrum. If there mrenac-
rostates, a gap will occur between,_; and y,,: there will . e e
be m slow modes generating intermacrostate probability Jmp(x’t)_%_; Pa D a(X). 6)
equilibration, and the remaining fast modes will generate in-
tramacrostate relaxations.

For example, in Fig. @A) the energy barrier centered at
x=0 separates configuration space into two macrostates
andb (roughly containing the regions<0 or x>0, respec-
tively). Correspondingly, there is a spectral gap<y,; so
m=2. vy, is the rate of the slow transfer of probability be- pehY ,(X)
tweena and b,which is generated by the slow decay of the W, (X)=————. (7
amplitude ofp;. Thus,79°°3~ y 1 The larger values of the o(X)

Yn>1 correspond to tht_a fast d_ecays of the more-rapid_ly VaryEquation(G) and the non-negativity off, imply that

ing ¢,-1, corresponding to intramacrostate probability re-

laxations. The slowest of these ratgs, determines the time W, (X)=0 V a,x (8a)
needed for local equilibration. Thus!°®@~ 5, *.

In this simple case, it is tempting to “crisply” define the
macrostates by inspection as the regions0 and x<0. 2w, (x)=1 V¥ x (8b)
However, this is inapt for two reasond: A sharp boundary “

at x=0 introduces high-frequency dynamical modes anqNa(X) specifies the probability of assignment of microstate

thus_ ISI L;]com_p?tlbl.e with ab_cort1_5|st_ent IO\f[\_/-frequ;rgcy .dy'to macrostater. The window functions corresponding th,
namical description; an@®) subjective inspection and barrier and 9, are shown in Fig. ). They define a fuzzy dissec-

identification are not possible in multidimensional problems.,[ion of configuration space into the macrostate regians
Instead, we use this example to show how the correct 1‘u22£0 andx>0

macrostates can be identifiedithout subjective inspection Now we can address the precise definition of thg

by 2 genera_llzable_ algorlthm: " themselves. Since they span the macrostate subspace, they
The starting point is the recognition of the spectral 98Pmust be linear combinations of the slow eigenfunctions:

y1<7,. Whent>y, !, the values op(x;t) for all x<0 or

wherep$?is the total probability contained in the macrostate
regiona at equilibrium.

The ¢, implicitly define the macrostate regions. To make
this explicit, we definenacrostate window functions

all x>0 will be highly correlated, and relative equilibrium m-1
within (but not betweenthese regions will be achieved. B, ()= 2, Mnen(X). (9)
Therefore, in this temporal regime(x;t) can be well ap- n=0

proximated by an expansion within the rankd® general, .

rankn) macrostate subspacepanned byp, and ¢;, and  Since thee, are smooth, they,, and hence thev,, must
only the first two terms in the summation in E) need to al_so be smooth. This induces an unavc_mdal_ale uncertamt_y in
be kept. To obtain a probabilistic description, we replace thighicrostate assignment. For example, in Fig. 1 the assign-
truncated eigenfunction expansion by an expansion in thE€nts are almost certain fox|>0, wherew,~1, but are
alternative basis provided by the non-negativacrostate highly uncertain forx~0 wherew,(x)~0.5. The essential
distributions ©,(x) and 9,(x) (to be defined precisely be- POInt is to choosev, and hence the}, andw,, so as to
low) shown in Fig. 1A), panels ¢ and dJ, (or 9,) is  Mmaximize certainty. We _defmb’.a., t_he uncertam@yof mac-
approximately proportional tp, for x<0 (orx>0) and~0  rostatea, as the sum of its equilibrium probal:.)|l|ty-we'|ghted
for x>0 (or x<0). Thus, Eq.(3) can be replaced by the overlaps with the other macrostates, relative to its total

e, d
macrostate expansion probability:
p(X't)~2 P ()3 ,(X) (4) 1This definition is motivated by an analysis of the experimental
i ¢ macrostate preparation and measurement prq@dss
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2 J eqy)d we modell’ from D using the following heuristic argument:

f7a Wo(X)Wa()pH(x)dx A starting point is to sef';; =(Dij)‘2 by analogy to the rate

o= (10 of diffusion between two isolated microstates in one dimen-
f w,,(X)p®Yx) dx sion. However, this does not account for the interception of

probability flux by intervening items. To model interception,
we use an exponential cutoff scaled to the mean nearest-

Using Eqgs.(6), (7), and(8b), the macrostate certainty , is neighbor squared distan¢d§):

YaEl—Ya=(p§q)’1J w2 (x)peqx)dx. (11) e~ (Dip?/2(d})

Fij W, 1#], (168)

We chooseM so as to maximize the geometric mean of the

Y , subject to the constraints of E¢B). This minimum un- N

certainty criterionminimizes macrostate overlap and, in the (d§>= N‘lZ (D;-)?, (16h)
example of Fig. {A), results in thed, andw, shown in i=1

panels ¢ and d. The amount of overlap of these optimized

macrostate functions depends on the magnitude of the spe@NereDi- is the smallest element in théh row of D. The
tral gap. diagonal elements df are fixed by Eq(15).

I' defined by Eq(16) is symmetric, so its left and right

B. Adapting macrostate coarse graining to data clustering eigenvectors are identical. Therefore, Etf) implies that

To adapt the physical coarse graining procedure to data r-1=0 (17
clustering, we make the computational analdgycrostates,
macrostates'} « {items, clustersf(D~1)}. In this anal- and the equilibrium probability vect@®® is
ogy, the continuous configuration space of microstatés
replaced by a discrete space of itemi<i<N, and the p%9=N"11, (18
probability distributionp(x,t) is replaced by(t), the vector
of individual item probabilitiesp;(t) [e.g., see the simple Equation(14) and the symmetry of" imply that all its
example in Fig. 1B)]. Sincep(t) is a probability vector, it eigenvectorsp, are orthogonal and that all its eigenvalues

must satisfy — v, are nonpositivesee Appendix B It is convenient to
. use bra-ket notation to indicate the renormalized inner prod-
pi(h)=0 V it (128 yct
1pt)=1 V (12b) (X]y)=N"1x-y, (19
where and to normalize the eigenvectors so that
=1 Vi.
I <¢n|¢m>:5nm- (20)
By analogy with Eq{(2), we assume that the dynamics in
the item space are described by the microscopic master equghe”’
tion
dp(t) , _ .
TR (13)  Figure AB) illustratese, and ¢, computed in this way for a

simple case oN=20 items in a one-dimensional measure-
whereT is a first-order transition matrix. Non-negativity of ment space.

eachp;(t) under time evolution requires that Since all the elements @, are identical, the vector ana-
log of Eq.(7) is trivial and the macrostate distributions and
Ij=0, i#] (14 window functions are directly proportional to each other.
) N ] Therefore, we simplify by expressing time cluster window
and conservation of probability requires that vectorsdirectly in terms of them slow eigenvectorgfor now
1.T=0. (15) we assume thah has been specifigd
m-—1
The central assumption of the analogy is to assume that W= 2 M 22)
['j(i#]) depends o;;, the dissimilarity between iterris ¢ =D an®n -

andj. If D were embedded as a distance matrix in a metric

space(e.g., as when it is computed from a measuremenfnalogous to Eqs(8), thew,, satisfy the positivity and sum-
matrix X), thenI" could, in principle, be computed by solv- mation constraints required for a probabilistic interpretation,
ing a multidimensional diffusion equation in the continuous

space. However, this would be extremely expensive. Instead, W,)i=0 V aii, (239
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We have found that choosing,=3 andpy =0.68(the frac-
> w,=1 (23D tion of the normal distribution contained within one standard
“ deviation of the meanworks well for all the problems that
we have tested@see Sec. I\

The complete algorithm is to sequentially compd{en)
form=2,3, ... and tdest these clusterings for acceptability
according to Eq(28). If multiple clusterings are acceptable,
> M= 6no. (249)  we will usually be most interested in the one of largest

@ since it provides the finest resolution. As a practical matter, if
C(m) is not acceptable for three consecutmis we assume
that it will not be acceptable for higher's and terminate the

Equations(21) and (23b and the orthonormality of the
eigenvectors implies then summation constraints dv

By analogy to Eq(11), the certainty of clustew is

analysis.
o (W) d
YN ) 9
@ D. Computational implementation
As in the continuous case,SO?aﬁl. Maximizing the geo- Only two steps in the procedure are potentially expensive:

computing the slow eigenvectors and eigenvalue§ @ind
the global minimization ofb (M). Since we only use a rela-
tively small number(typically m<<10) of slow eigenvectors,
it suffices to compute only these via the Lanczos method
O(M)=-> InY (M). (26)  [27] at cost~O(N?). The global minimization ofb(M) is a
@ linearly constrained global optimization problem m(m
—1) dimensions. The number of vertices of the feasible
Minimization qu), consistent with the linear constraints region_bounding po]ytope increases WN'] forma”y as a
of Eq. (24) and the linear inequality constraints of E3a  polynomial dependent om. However, at least for the prob-

fixesM, and hencav,, for a specified value of. The so-  |ems tested here, a simple minimization algorithm is ad-
lution of this global optimization problem is discussed in equate(see Appendix A

Appendix A. There we show that the resultantare linearly

metric mean of?a is equivalent to minimizing the objective
function

independent, so they provide a complete basis for the mac- . RESULTS
rostate subspace. Once the have been computed, we com-
plete the clustering procedure forby assigning each itern We tested the method on a number of problems that have

to the clustera having the maximal value ofi,); . We say  challenged other clustering methods. Bivariate problems in
that the assignment is “strong” or “weak” depending on Which the dataset can be graphically displayed in two dimen-
how close this maximal value, thitem assignment strength  sions were used to enable subjective evaluation of the quality
is to 1. The assignments are extremely strong for the exof the results. In addition, to check that performance did not
ample shown in Fig. (B) (re panels ¢ and)decause of the depend on low dimensionality of the data space, we tested
relatively large separation between the two clusters. problems where the items were embedded in a 20-
In some cases, the procedure may define a cluster witdimensional space.
only a single item. In this casg® is undefined and there is
no meaningful dissection of dynamics into slow and fast pro- A. Bivariate test cases

cesses. Therefore, we treat such outliers by a special proce- The alaorith luated on f iouslv d ibed
dure. When one is identified, it is removed from the dataset,. . ¢ /9orthm was evaiuated on four previously describe

and the pruned dataset is reanalyzed. The pruning proceduﬁgﬂcu“ test cases. In each case, the dataset consisted of

is repeated if new outliers appear. We designate the fin M=2 measurement_s on eachl‘c'bfltems.;. These can be rep-
clustering a(m). resented ad\ points in a two-dimensional space. For ex-

ample, the “crescentic” clustering problem shown in Fig.
2(a) consists of 52 items, each represented as a point in the
two-dimensional measurement space. The two clusters are
We use two conditions to determinedfm) is anaccept-  closely juxtaposed crescents, which makes the problem dif-
able clustering As motivated above, we examine the ficult [28,2. The D matrix was computed from the coordi-
eigenspectrum of for spectral gaps, which are defined as nhates using Eq(1) with g,,=J,,, and " was computed
from D according to Eqs(16). The slowest eigenvectors,
Ym! Ym-1>py, (27 ¢, ¢1, ande,, are graphically displayed in panels b, c, and
d, respectively. As per Eq18), all components ofp, are
wherep,, is theminimum gap parameteHowever, Eq(27)  identical. It is gratifying to see thap, clearly reflects the
alone may accept excessively fuzzy clusters having weakwo-cluster structure: the components of all the items in the
item assignment vectors. To eliminate these, we supplememottom-right crescent are positive, while the components of
Eq. (27) with the minimum macrostate certainty conditions all the items in the other crescent are negative. The next
. eigenvectokp, has three localized regions of same-sign com-
Y, >py V a. (28) ponents. Subjectively, it is clear that separating into these

C. Determining the number of clusters
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regions would overdissect the space. As predicted by the
discussion above, these eigenvector properties in the spatial FIG. 3. Bivariate test cases. The algorithmically determined
domain correspond in the time domain to an eigenspectrurplusteringsC(m) for 2<ms=5 are displayed for four bivariate ex-
gap betweery; andy, (Fig. 2 and Table)l In contrast, there amples in which the items are points in a two-dimensional measure-
is no gap betweery, and y; (Fig. 2). This suggests that the Mment space. Clusters_ are Qist_inguished by differe_nt symbols, ex<_:ept
m=2 clustering, but not then=3 clustering, will be accept- that unfilled squares identify items that were deS|gpated as outliers
able. by the algorithm. The acceptable clusterings, which satisfy Egs.
The task for the algorithm is to recognize that the correc{?”) @nd(28), are outlined by dark boxes.
clustering is embedded in the structure¢f, and to define
the proper clustering. Applying it fan=2, 3, ... yieldsthe Table |I. Them=2 clustering satisfies both Eq&7) and
clusters shown in the top panels of Fig.(Bor illustration,  (28), and all clusterings wittm>2 fail both criteria. There-
we display clusterings that do not satisfy the spectral gagore, the algorithm correctly seleats=2 clusters. The indi-
condition, even though these would not be computed by agidual item assignment strengths for this clustering are dis-
efficient algorithm) The cluster certaintie¥', are listed in  played in Fig. 4; most are in the range of 6.3.9, indicating
that there is significant fuzziness resulting from the close

TABLE I. Crescentic cluster analysis. juxtaposition of the clusters. Nonetheless, all the item assign-
ments are made correctly.
Ym The following three test problems were analyzed in the
m Ym-1 Y ,(m) same way.
(1) The “intersecting” problem consists of two barely
2 3.52 0.71 contacting sets of items having highly anisotropic Gaussian
0.70 distributions. It has previously been used to demonstrate the
3 112 0.67 weakness of nonparametric optimization clustering for clus-
0.41 ters of greatly different shapes and sif&$
0.53 (2) The “parallel” problem consists of two highly ex-
4 2.73 0.83 tended, anisotropic sets of items whose separation along the
0.81 vertical axis is much smaller than their horizontal extent. It
0.51 has previously been used to demonstrate the failure of ag-
0.53 glomerative hierarchical method2].
5 1.03 0.71 (3) The “horseshoe” probleni3] consists of a central
0.47 cluster of items surrounded by a horseshoe-shaped cluster of
0.55 items. The center of mass of the outer cluster lies within the
0.38 inner cluster, increasing difficulty. In addition, a “random”
0.38 test set, in which points were randomly distributed within a

square two-dimensional region, was analyzed as a control.
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FIG. 4. Iltem assignment strengths for the acceptable clusteringof the dark section of the bar at the position of an item indicates its
The acceptable clusterings for each of the problems in Fig. 3 arassignment strengtliMost of the strengths are-1.)
shown. The height of the dark section of the bar relative to its total

height at the position of an item indicates its assignment Strength'assignment strengths of some of the items in the vicinity of

) . the intersection have weak item assignment strengths. Due to
The results obtained fcm=2, 3,4, and 5 are illustrated of thiS, them=2 andm=3 C|usterings do not Satisfy the

in Fig. 3. The acceptable clusterings that satisfy H@3%)  required assignment certainty condition, E88), and are

and(28) are outlined by dark boxes. Only a single clusteringrejected by the algorithm. The acceptalote=4 clustering

is acceptable in each casaithough this need not be so in resolves this difficulty by segregating these uncertain items

general. None of the random control clusterings are acceptinto a separate small cluster. It also segregates two outliers

able, correctly indicating that it should not be clustered.  (in the top-right cornérwhile assigning most of the items to
As with the crescentic problem, the clustering solution fortwo major clusters, as desired. The individual item assign-

the “horseshoe” test-casdourth row, Fig. 3 is straightfor-  ment strengths are strong, except for one item near the inter-

ward, withm=2. Cluster certaintie§Table 1)) and item as-  section of the three cluste(Big. 4.

signment strengthsFig. 4) are extremely strong>0.99). None of theC(m) are acceptable for the “random” distri-

The “parallel” problem is slightly more challenging, in that pytion of items because all of the,,/y,,_, were <2.5 for
two of the itemglocated at the extreme left and right sides of 3~ 1, Thus, the algorithm is not misled into spurious clus-

the item distributionsare identified as outliers. Nonetheless, tgring.
the algorithm correctly identifies thm=2 clustering of the
nonoutlying items. As ex_pecteq, the item aSS|gnm§nt B. Gaussians with varying overlap in two and 20 dimensions
strengths are lower for the items in the central overlapping ) )
region, and higher for the nonoverlapping items near the left \We systematically tested the performance of the algorithm
and right edgesFig. 4). as a function of the relative distance between clusters. For
The solution to the “intersecting” problem is more elabo- this purpose, four pseudorandom groups of 50 items were
rate: While them=2 solution is subjectively acceptable, the generated with Gaussian kernels having variange The
centers-of-mass of the groups were themselves pseudoran-
domly selected from a Gaussian kernel having varia)r@e
(see Fig. % The corresponding ratio of the expected root-
mean-squarérms) intercluster item-item separations to the

TABLE Il. Bivariate test-case analyses.

In _ rms intracluster item separations is
Problem m Ym-1 Y ,(m)
Crescentic 2 3.52 071 ((AR))inger_ Ny 29
0.70 <(AR)2>intra
Intersecting 4 3.82 0.91
0.95
0.84 Tests in a bivariate measurement space were conducted for
0.94 Ng/\ ¢ varying from 16(where the clusters were highly sepa-
Parallel 2 10.68 0.93 rated down to 2(where the clusters were completely over-
0.93 lapping. The algorithm dissects the items into four clusters
Horseshoe 2 60.73 0.998  whenky/N;=16. Whenky/\,=8 and\y/\,=4, the top
0.99 two groups partially mergésee Fig. 5, and the algorithm
Random 1 accordingly reportsn=3 clusters. The clusters are not sub-

jectively separable foxy/\,=2; correspondingly, the algo-
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rithm reportsm=1 cluster. The assignment strengths for %_4
=

, ) O m=4
these clusterings are displayed in Fig. 5. . .
The same test was performed with four groups generatec
as described above using Gaussian kernels in a 20§
dimensional space. The increased dimensionality does ncg
alter Eq.(29). However, the distributions of the intergroup 3
and intragroup squared-distances are narrower: the standaig
deviations of the intergroup and intragroupR)? normal-
ized by their means are both smaller by factors\@&0/2
=/10. Therefore, for a given value afy/N\¢, clustering is
actually easier in higher dimensionality. To compensate anc 0 40 80 120 160 200 0 40 80 120 160 200
make the 20-dimensional test more challenging, the range o

\g/\ was reduced by a factor of(foughly matching/10);

.e., Ng/\, was varied from 4 down to 0.5. The algorithm rg _ 4 m=3 %=1/2 m=2
correctly identifies the four clusters foxy/\,=4 and v " .
Ng/N¢=2. The individual item assignment strengths of these
clusterings are displayed in Fig. 6. These are all close to one¢
for Ng/N¢=4 and\4/\,=2, indicating unambiguous clus-
tering. At smaller values ok4/\;, the only clustering sat-
isfying both the minimum gap and minimum certainty con-
ditions has one cluster containing all the items. Even so, for;
Ag/N¢=1, the(formally unacceptablem=3 clustering cor-
rectly reflects some of the group structiFeg. 6).

S
Assignment Strengths

Assign

Item Serial Number Item Serial Number

gnment Strengths

Assignment Strengths

Ass

0O 40 80 120 160 200 0 40 80 120 160 200
IV. DISCUSSION Iltem Serial Number Iltem Serial Number

We have shown that macrostate clustering performs well F|G. 6. Item assignment strengths for cluster solutions for vari-
on a variety of test problems that have challenged othetus group separations in 20 dimensions. Items were pseudoran-
methods. The method only needs a dissimilarity maBix domly distributed into four groups in a 20-dimensional measure-
(not a data matrixX) and has the advantage of being ment space for different values af;/\, as described in the text.
nonhierarchicaf, which should improve performance, in The items within each group have consecutive serial numfers
general. Beyond identifying potential clusterings, it uses indtems 1-50 are in the first group, 51-100 are in the second group,

ternal criteria—the eigenspectrum gaps,/vm,—, and the etc). Their assignment strengths for the indicatich) clusterings

cluster certaintied’,,—to determine the appropriate number &€ displayed in each casétem 171 is an outlier for both cluster-

of clusters. The corresponding acceptance paramﬁ;,aisd ings shown in the bottom row; hence it is not assigned to any
’ . ; cluster) However, only them=4 clusterings for\,/\,=4 and
py Wwere empirically determined and gave robust

. . Ng/N\¢=2 are acceptable;(3) andC(2) shown in the bottom pan-
S _Mglhe
E?:g?:sa;re]ge a single choice worked well for all the prob els fail the acceptability conditions of Eq27) and(28) because of

. . . their low cluster certainties.
Eigenvectors have previously been used for clustering by

many different spectral graph theofsGT) partitioning o

methods: SGT bipartitioning methods use the valueg,ao ~ Within the subspacée.g., Refs[8,19,23,30-3E and refer-
define a one-dimensional ordering of the items which cargnces therein

then be divided by a heuristic. A variety of different ap- Macrostate clustering is different because it computes
proaches have been developed to extend this to multipleontinuous(fuzzy) assignment window vectors rather than
eigenvectors and clustefsee Refs[18,19,21,23 for re- partitionings® This has important ramifications: It permits
view). For example, recursive spectral bipartitioning generthe window vectors to be expressed as linear combinations of
ates a hierarchical binary trg@2]; some methods usk the eigenvectorgsee Eq.(22)]; this necessarily results in
eigenvectors to define*2clusters[29]; and many methods Window function overlap and cluster uncertainty. Combining
project the items into the Subspace spannekj ﬁgenvectors these concepts with the principle of Uncertainty minimization

and then use a partitioning heuristic to identify clustersProvides a simple prescription for the concurrent use of mul-
tiple eigenvectors in clustering. A related difference is that

the number of clusters is internally determined in macrostate

2For example, then=5 “crescentic” clustering cannot be ob- cl_ustering, while it is usually fixgd_prio_ri or determined by
tained by subdividing itsn=4 clustering and then=4 “horse-  €igensystem-independent heuristics in SGT meth@dg.,
shoe” clustering is not hierarchically related to its= 3 clustering.
Nevertheless, inherent hierarchical structure can still emerge, and
some was evident in all the problems. For example, all the cluster- *Drineas et al. [6] consider real-valued “generalized clusters”
ings for 2<m=5 for the “intersecting” and “parallel” problems within a SGT context, but these are indefinite and do not have a
are hierarchically relatetFig. 3). probabilistic interpretation.
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Refs.[18,19,23, and references therginlt is perhaps sur- plies thatp®%:1. However, this restriction is not required:
prising that the spectral gap condition has not been used forhe generalization to asymmetrt is straightforward 24]
this purpose in SGT approacteFhis may reflect the fact and it could be used to incorporate additional experimental
that it does not work well by itself, and the companion mini- information. For example, if itenh is knowna priori to be
mum cluster certainty condition is not available whenpartially redundant with other item&.g., when analyzing
(crisply) partitioning. Macrostate and SGT clustering alsoexpression levels of members of gene famjligs may be
differ in the manner in whicli™ (or the SGT analogis com-  given reduced weight in the analysis by settjifg<1.
puted from the dissimilarity matri0. SGT methods typi- Our main goal has been a proof-of-principle demonstra-
cally use a weight matrix equivalent 1g; = exp(—D;; /o), i tion of the high quality of the clusterings provided by the
#j, whereo is an empirically-determined scale constant. Indynamical macrostate approach. The current implementation
contrast, motivated by the analogy to a diffusive system, wés sufficiently efficient for problems whemd~0O(10?), but
used Egs(16). While this difference is not of fundamental we have not examined performance for very large problems.
significance, the relationship betwe&hand D can affect The continuous formulation replaces the nonpolynomial-hard
performance. Thus, it may be helpful to test the use of EqsINP-hard combinatoric SGT partitioning problem with a
(16) in SGT methods or the SGT relationship in macrostateglobal minimization problem having polynomial complexity
clustering. in N. However, the order of the polynomial can be very large
The use of a linear transformation from indefinite, or-for largem (Appendix A so, formally, this is not much of an
thogonal eigenvectors to semidefinite, nonorthogonal winimprovement. Nonetheless, as discussed in Appendix A,
dow vectors is fundamental, but some freedom remains isince the objective function is smooth and the constraints are
the choice of the objective function used to determine thehighly degenerate, a simple minimization algorithm has
optimal transformation and in the conditions used to deterworked well and we believe that it will be possible to obtain
mine acceptable clusterings. An uncertainty minimizationadequate approximate solutions efficiently, even for very
criterion is a natural choice, since it {& an information- large problems. This remains to be examined.
theoretic sengethe entropic counterpart to themplicit)
“energy” minimization criterion that focuses attention on the ACKNOWLEDGMENTS
slow eigenvectorgsee Sec. Il C of Ref.26]). On the other
hand, the definition of uncertainty could be modified and e thank Bruce Church, Jason Gans, Ron Elber, Jon
tested for improved performance. Similarly, while we believeK!€inberg, and Golan Yona for helpful conversations and the
that it is advantageous to combine energésigectral gap NSF (Grant No. CCR998851%nd the NIH(training Grant
and entropidcluster certaintyconditions in determining the NO: T32GM08267 for support.
number of clusters, it may be possible to improve upon the
specific criteria used here. APPENDIX A: MINIMIZING ~ ®(M)

Other improvements and extensions requiring attention

are the following. ments ofM ., within the feasible region specified by the

. (1) While we a.ccepted or rejected eac.h clystenmg)to, X N linear inequality constraints of EQR33. The rows of\
it may be useful in some cases to examine incomplete clus- ) . ;

. X . . can be regarded as the coordinatesnofparticles in the
terings in which only some of the clusters satisfy the cluster

certainty condition. This modification would enable the algo_r:dmensgnal space of the slow fe|genv_e|ctors. Designating
rithm to resolve all four clusters for the case)qf/A,=8 in "€ coordinate row vector of particlea as M,

®(M) is to be minimized as a function of tha? ele-

Fig. 55 =(Mao,Ma1, ... Mym-1)), M is the outer product of the
(2) The individual item assignment strengths,j; mea- M4S:

sure the certainty of each assignment, but their precise sta- -

tistical significance is not known. It would be helpful to have M=aM,. (A1)

a model for assessing this.
(3) The cluster transition matr'xyﬁa:<wﬂ|r|wa> can be The equality constraints of EG24) imply that the center of
used to assess the strength of the relationship between t%ss of them particles is at position
clusters and may be useful in setting the cluster acceptance
criteria. o
(4) We have defined’ as a symmetric matrix, which im- > MaZEO, (A2)

“However, spectral gaps have been used heuristically to determin&hereeg is the unit vector in the zeroth direction:
the appropriate dimensionality of singular subspaces in data mining R
[33]. £0=(1,0,...,0. (A3)
5The m=5 solution identifies the four major clusters with strong
certainty, but also groups three iterflecated near the boundary [Equation(A3) must be modified when there is more than
between the two top clustérénto a fifth cluster which hag’,  One stationary eigenvector; see Appendiy Bhe feasible
<py . In an incomplete clustering, all but these three items wouldregion is a polytope in then(m—1)-dimensional subspace
be unambiguously assigned. where Eq.(A2) is satisfied.
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The minimum of® (M) must lie at a vertex of this poly- L . 2|(§ |2
tope. . 8a°(V,@V ) @08, =~ ——-<0,
Proof. The gradient ofb with respect toM , is L7

) S M éo Thus, Eqgs(A7) and (A8) cannot both be true. Therefore, a
Vb=—=-2=""+—-— (A4)  minimum can occur only ifall variations of theM, are
oM, IM? Mgogg prevented by a combination of inequality and equality con-
L straints. Since there are onty equality constraints, we must
and the Hessian is havec=m(m—1) active inequality constraints. This corre-
" - - sponds to a vertex of the feasible region.
- - 5P 21 M, ®M, N . .
V@V b= ————=— 5,5 ——— a Note also .thgt the mllnlmlz!ngM o must be linearly in-
oM oM 4 M, |? M |4 dependent within therdimensional slow eigenvector space.
~ A This implies that the associatdav,} must span the mac-
g0®eg (A5) rostate subspace.
(MHOQO)Z ’ Proof. If the {M¢} are not independent, there would exist

a linear combination of vectors such that
wherel is themXxm identity matrix and> denotes the inner
product over the eigenvector indices,

> £Me=0.

m—1
Xoy= >, X.Vn. , o
y ngo nYn Then, the combined variation

The gradient does not vanish anywhere dstas no mini- MS—MS+86,MS, Va,
mum in the absence of constraints.

In fact, a minimum will occur only whemll m* degrees \here 5 is a small number, will not affect the equality con-
of freedom are constrained by theequality constraints and  straint, Eq.(A2). As proven above, all the components of the
m(m—1) inequality constraints. To see this, consider theconstrained minimum must be fixed by constraints, so this
situation without the equality constraints, but with someyariation must be excluded by an inequality constraint. How-
numberc<m(m—1) of active inequality constraints. Each gyer, this variation only rescales eabf, and hence each
active inequality constraint actalentified by item index) " Therefore, it also will not affect the inequality con-

on a singlew,, so by Eq.(22) it acts on a singleM, 10 gsiraints and is permitted, contrary to assumptReductio ad
enforce absurdum.
- To find the vertex with the lowest value df, we used a
Mao=0, (A6) simple minimizer that operates in ting(m— 1)-dimensional
subspace that remains after one of kg has been explicitly

where ¢ is the supervector having components . . L
(€o, 01, - - - wom_1). Therefore, the inequality constraints eI|[n|nated using Eq(A2). The minimizer starts fronM,

are separable and, similar to E@\1), the space of inequality =¢&o/m Va chooses a random direction in the
constrainedM’s can be expressed as the outer product off(m—1)-dimensional space, proceeds to the nearest in-
the subspaces of inequality constrain®tl’s. Thus. if €duality constraint, and then proceeds along faces of the fea-

M®=& MC is an inequality-constrained minimizer d, it sible region(of decreasing dimensionaljtuntil a vertex is

must be stable with respect to independent variations of eacreached. This process was repeated unil the same extremal
pect K P |191inima was found three times or for a minimum of 500 000

. . . c o
of the inequality constrainei . However, this is not pos- trials, whichever was greater.

sible: For any such variatiom ;, — Mg+ &, the existence of  Accounting for the separability of the inequality con-

a minimum would require that straints and assuming no degeneracies between the values of
I the ¢, (the usual cage the number of vertices of the con-
0,°VP=0 (A7) straining polytope might grow as rapidly &(N™). How-

ever, we expect that most of the inequality constraints of Eq.

and (233 will be almost degenerate because of the relatively
- - - - small differences between the components of the eigenvec-

6,0(V, 8V )P5,>0. (A8)  tors at different items within a cluster. Moreover, the objec-

tive function® is smooth, so we expect that the variation of

However, Eqs(A4) and (A7) imply that @ over nearby vertices will be small. Therefore, it will not

- - - A affect w, much if a neighbor, rather than the global mini-
Moo da _ 9a°€0 mizer itself, is found. Thus, we anticipate that the practical
IM_|2 2M o8, growth in computational cost witN will be much less than
the worst-case bound. These considerations also suggest that
and combining this with EqA5) implies that it will always be advantageous to use solvers that move

056704-10



MACROSTATE DATA CLUSTERING PHYSICAL REVIEW E67, 056704 (2003

through the[m(m—1)—1]-dimensional space of search- S andjeS. In this casel" will have multiple zero eigen-
space directions rather than between vertices of the corvalues, and there will be one stationary eigenvector corre-

straining polytope.

APPENDIX B: DEGENERATE “ZERO” EIGENVALUES

Sincel is a symmetric matrix that satisfies E¢$5) and

17),

_X.F.Xzz Fij(xi_xj)z (Bl)
=i

for any vectorx. The right-hand sidérhs) can be viewed as

sponding to each isolated subset. This degeneracy can be
removed by analyzing each isolated subset independently.
It is more common to encounter approximate isolation in
which none of thd’j; is exactly zero but in which there are
multiple small eigenvalues that are 0 on the scale of numeri-
cal accuracy(This occurs in the Gaussian clustering problem
shown in Fig. 5 whemy/\, is large) This can cause nu-
merical problemsip, returned by a numerical eigensystem
solver will not necessarily satisfy EGR1), but instead will
be a linear combination of the approximately degenerate
eigenvectors. Due to this, ER1), and hence Eq24), may

the potential energy dfl particles having pairwise quadratic not be true.
interactions in one dimension. Since all the off-diagonal el- The simplest resolution of this numerical problem is to
ements ofl” are positive, the rhs must be non-negative. Thereplace Eq(24) with Eq. (A2) and to replace EqA3) with

implied nonpositivity ofx-I"-x for all x implies that all the

eigenvalues of" must be nonpositive. Furthermore, the iso-

morphism makes it evident that=1 is the only stationary
eigenvector (up to a multiplicative constaptunless the
dataset contains asolated subses, which hasl’;;=0 if i

£0=(1|¢). (B2)

This does not require the numerical validity of EQ1).

[1] B. Mirkin, Mathematical Classification and Clusterir(¢lu-
wer Academic, Boston, 1996

[2] B. Everitt, S. Landau, and M. Lees€|uster Analysis4th ed.
(Arnold, London, 200}, pp. 1-10.

[15] L. Giada and M. Marsili, Phys. Rev. &3, 061101(2001).

[16] L. Angelini, F. DeCarlo, C. Marangi, M. Pellicoro, and S. Stra-
maglia, Phys. Rev. LetB5, 554 (2000.

[17] D. Horn and A. Gottlieb, Phys. Rev. Le&8, 18702(2002.

[3] Z. Szallasi, inProceeding of the Second International Confer- [18] A.J. Seary and W.D. Richards, Proceedings of the Interna-

ence on Systems Biolog€alifornia Institute of Technology,
Pasadena, CA, 2001 URL http://www.icsb2001.org/
SzallasiTutorial.pdf

[4] A. Jain and R. DubesAlgorithms for Clustering Data
(Prentice-Hall, Englewood Cliffs, NJ, 1981

[5] R.B. Altman and S. Raychaudhuri, Curr. Opin. Struct. Bidl.
340 (2002.

[6] P. Drineas, R. Kannan, A. Frieze, S. Vempala, and V. Vinay, in

tional Conference on Social Networledited by M.G. Everett
and K. Rennel (European Network Conference, London,
1996, Vol. 1, pp. 47-58, URL http://www.sfu.ca/richards/Pdf-
ZipFiles/london98.pdf

[19] Y. Weiss, inProceedings of the Seventh IEEE International
Conference on Computer Visioadited by B. Werne{IEEE
Computer Society, Los Alamitos, CA, 199%0l. II, pp. 975—

Proceedings of the Tenth Annual ACM-SIAM Symposium on 982, URL http://citeseer.nj.nec.com/weiss99segmentation.html

Discrete Algorithms(ACM Press, New York, 1999 URL
http://doi.acm.org/10.1145/314500.314576

[7] O. Alter, P.O. Brown, and D. Botstein, Proc. Natl. Acad. Sci.

U.S.A. 97, 10101(2000.
[8] R. Kannan, S. Vempala, and A. Vetta, Rroceedings of the

[20] F.R.K. Chung,Spectral Graph TheoryCBMS Regional Con-
ference Series in Mathematics Vol. @8merican Mathemati-
cal Society, Providence, RI, 1997

[21] D.A. Spielman and S.-H. Teng, irProceedings of the
37th Annual Symposium on Foundations of Computer Science

41st Annual Symposium on Foundations of Computer Science (IEEE Computer Society, Los Alamitos, CA, 199¢p. 96—

(IEEE Computer Society, Los Alamitos, CA, 200pp. 367—
377, URL http://citeseer.nj.nec.com/495691.html
[9] G. Milligan and M. Cooper, Psychometriled, 159 (1985.

105, URL http://citeseer.nj.nec. com/spielman96spectral. html
[22] S.T. Barnard and H.D. Simon, Concurrency: pract.&x101
(1994.

[10] A.D. Gordon, in Data Science, Classification and Related [23] C.J. Alpert, A.B. Kahng, and S.-Z. Yao, Discrete Appl. Math.

Methods edited by C. Hayashi, N. Ohsumi, K. Yajima, Y.

Tanaka, H.-H. Bock, and Y. BabéSpringer-Verlag, Tokyo,
1998, pp. 22-39.

[11] K. Rose, E. Gurewitz, and G.C. Fox, Phys. Rev. L&§. 945
(1990.

[12] M. Blatt, S. Wiseman, and E. Domany, Phys. Rev. L&8.
3251(1996.

[13] S. Wiseman, M. Blatt, and E. Domany, Phys. Re\b & 3767
(1998.

[14] L. Kullmann, J. Kertesz, and R.N. Mantegna, Physicagy,
412 (2000.

90, 3 (1999.

[24] D. Shalloway, J. Chem. Phy&05, 9986(1996.

[25] R. Kubo, M. Toda, and N. Hashitsum8tatistical Physics Il
:Nonequilibrium Statistical MechanicSpringer-Verlag, New
York, 1985.

[26] A. Ulitsky and D. Shalloway, J. Chem. Phy&09 1670
(1998.

[27] G.H. Golub and C.F. VanLoamatrix Computations2nd ed.
(Hopkins University Press, Baltimore, MD, 1989

[28] M. Wong and T. Lane, J. R. Stat. Soc. Ser. B. Method$)|.
362 (1983.

056704-11



D. KORENBLUM AND D. SHALLOWAY PHYSICAL REVIEW E 67, 056704 (2003

[29] B. Hendrickson and R. Leland, iRroceedings of the Sixth URL http://citeseer.nj.nec.com/meil0Ollearning.html
SIAM Conference on Parallel Processing for Scientific Com-[32] A. Ng, M. Jordan, and Y. Weiss, iAdvances in Neural Infor-
puting (SIAM, Philadelphia, PA, 1993 pp. 953-961, URL mation Processing Systems, Jetlited by T.G. Dietterich, S.
http://citeseer.nj.nec.com/hendrickson93multilevel.html Becker, and Z. GhahramariMIT Press, Cambridge, MA,
[30] A. Pothen, H.D. Simon, and K.P. Liou, SIAM J. Matrix Anal. 2003, URL http://citeseer.nj.nec.com/ng01spectral.html
Appl. 11, 430(1990. [33] Y. Azar, A. Fiat, A.R. Karlin, F. McSherry, and J. Saia, in
[31] M. Meila and J. Shi, inAdvances in Neural Information Proceedings of the ACM Symposium on Theory of Computing
Processing Systems 1&dited by T. Leen, T.G. Dietterich, and (ACM Press, New York, 2001 pp. 619-626, URL http:/
V. Tresp (MIT Press, Cambridge, MA, 200,1pp. 873-879, citeseer.nj.nec.com/azarOOspectral.html

056704-12



